Basic Procedures for Common Problems


 Ada Simmons
 3 years ago
 Views:
Transcription
1 Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available to measure (outputs, y) 2 Note how many input and output variables you have 3 Start to write equations for the output variables This means write something in the form: y 1 =??? y 2 =??? y n =??? 4 Read through the problem and establish relationships between individual inputs ( u i ) and individual outputs ( y j ) The relationships generally represent the gain of the individual input output relationship, for example y j = K u i For example: Changing input 1 by 2% decreases output 1 by 5 means u = 2% and y = 5 and 5 = K2 Or K = 5/2 and y 1 = 25 u 1 5 Put all of the relationships into the equations Keep reading through the word expression until you relate all specified inputs and outputs: y 1 = 25 u 1 +??? y 2 = 4??? y n =??? 6 Write out the equations with all input variable in every equation, even if they have a 0 coefficient y 1 = 25 u u u 3 y 2 = 0 u u u 3 y 3 = 5 u u u 3 7 Realize that this can be put in the form: y = K u 1
2 Dynamic Modeling 1 Try to figure out what is changing with time Try to figure out what are manipulated inputs (u i (t)), what are disturbances (d i (t) ) and what are measurements (y i (t)) 2 Start to write dynamic mass and energy balances for the items that are changing 3 Note the accumulation term (a) Changing volume: V (t) = Ah(t) A dh (b) Changing amount of species in a tank: V C A (t) V dc A (c) Changing temperature in a tank: V ρc p (T (t) T ) V ρc p dt 4 Don t forget reaction terms for reacting systems V r(t) where r(t) is the reaction rate, usually in the form r(t) = kc A (t) (or more complex) 5 Write your equations and check units State Space 1 Identify x as the values that are changing with time in your accumulation term 2 Identify your manipulated inputs u 3 Identify your measurement equations Your measurements should be expressed as functions of the states and inputs 4 Write your dynamic equations, including terms for every state and input (with 0 coefficient if necessary) 5 Reorder the terms in you dynamic equations such that states come first in order, then inputs For example: dx 1 dt = 2x 1 + 3x 2 + 0x 3 + 2u 1 + 5u 2 6 Put the dynamic equations in the form ẋ = A x + B u 7 Write your measurement equations, including terms for every state and input (with 0 coefficient if necessary) 8 Put your measurement equations in the form: y = C x + D u 2
3 Laplace Transform of Dynamic Equations 1 If your steady state values are not all = 0, take your dynamic model equations and establish the steady state values for you inputs, states, and outputs This is accomplished by solving for unknowns with the accumulation terms = 0 2 If your equations are nonlinear, linearize your equations Here, such that A dh = F in(t) h(t) h(t) is nonlinear Near steady state, it can be approximated as h(t) h ss h 2 ss (h(t) h ss ) A dh ( = F in(t) h ss + 1 ) 1 2 h 2 ss (h(t) h ss ) 3 Subtract the steady state model equations from the dynamic model equations to put everything in deviation variables For example, y(t) = h(t) h ss and u(t) = F in (t) F inss (a) Remember to express the accumulation term with your deviation variables For y(t) = h(t) h ss, taking the derivative, dy dh (t) = (t) because h dt dt ss is constant 4 Express your dynamic problem using deviation variables u(t), y(t), d(t) These functions of time should = 0 at time t = 0 5 Take the Laplace transform of your system 6 Solve algebraically to get in the form or y(s) = g(s) u(s) y(s) u(s) = g(s) 7 If you have disturbances and inputs, your model can look like y(s) = g(s) u(s) + g d (s) d(s) Note that to get g(s) you can assume d(s) = 0 then solve for g(s) To get g d (s) you assume u(s) = 0 and solve for g d (s) 8 If you multiple inputs inputs, your model can look like y(s) = g 1 (s) u 1 (s) + g 2 (s) u 2 (s) 9 If you have multiple inputs and multiple measurements, your model can look like y 1 (s) = g 11 (s) u 1 (s) + g 12 (s) u 2 (s) y 2 (s) = g 21 (s) u 1 (s) + g 22 (s) u 2 (s) 3
4 10 Given the input as a function of time u(t) (or input and disturbances) you can determine u(s) (or u(s) and d(s) ) 11 Plug in to get an expression for y(s) in terms of the variable s Laplace of Complex Functions 1 You should be familiar with basic functions of time (step, impulse, ramp, exponential decay, sinusoid) 2 If the function is not 0 for t < 0 you should put the function in deviation variables For example, a step in F in (t) at time 0 from 2 to 3 can be expressed as a unit step in u(t) at time 0 with u(t) = F in (t) F inss 3 You should be able to express the complex function as a single function of time Multiply by the Heaviside function if needed For a function that ramps from 0 with a slope of 2 until time 10 settling out at a value of 20, this can be expressed as f(t) = 2 t H(t) + ( 2) (t 10) H(t 20) 4 Sketch the individual terms in your function as functions of time, then add them together to check your formulation You can plug in numbers to check your function 5 For each term, shift it in time such that the event occurs at time zero and determine the Laplace transform Use the time shift operator if necessary to express the function as some f(s) For the example: Solving for y(t) f(s) = 2 s s 2 e 20s 1 Establish y(s) as a function of s (Develop dynamic model, take Laplace of model, and determine u(s) and d(s) if needed) 2 Your response may be in the form y(s) = N 1(s) D 1 (s) + N 2(s) D 2 (s) e αs + + N 3(s) D 3 (s) e βs This expression with multiple terms will be treated as multiple different responses, each shifted in time 3 If you have a time delay, e αs, ignore it for now 4 Take a term from y(s) and determine the poles, the roots of D i (s) 5 Perform a Partial Fraction Expansion on the term For expressions with unique poles p i the result looks like: N 1 (s) D 1 (s) = Z 1 (s p 1 ) + Z 2 (s p 2 ) + + Z n (s p n ) For nonunique poles or imaginary roots, check the Appendix Nonunique Poles will result in Z 1 (s p 1 ) + Z 2s (s p 1 ) + Z 3s 2 (s p 1 ) while imaginary roots result in sin or cosine in your y(t) 4
5 6 Now you should be able to determine the inverse Laplace transform of each expression to yield a function of time, y 1 (t) y 1 (t) = Z 1 e p 1t + Z 2 e p 2t + + Z n e pnt 7 If you had a time delay in your term, shift the response by the time delay: y 1 (t) = ( Z 1 e p 1(t α) + Z 2 e p 2(t α) + + Z n e pn(t α)) H(t α) 8 Do this procedure for all your terms in the original y(s) 9 Add up all y i (t) to get y(t) 5
Time Response of Systems
Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) splane Time response p =0 s p =0,p 2 =0 s 2 t p =
More informationCHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang
CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 51 Road Map of the Lecture V Laplace Transform and Transfer
More information9.5 The Transfer Function
Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the nth order linear, timeinvariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +
More informationChemical Engineering 436 Laplace Transforms (1)
Chemical Engineering 436 Laplace Transforms () Why Laplace Transforms?? ) Converts differential equations to algebraic equations facilitates combination of multiple components in a system to get the total
More informationLaplace Transforms Chapter 3
Laplace Transforms Important analytical method for solving linear ordinary differential equations.  Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important
More informationUnit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace
Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,
More informationGATE EE Topic wise Questions SIGNALS & SYSTEMS
www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)
More informationSolution of ODEs using Laplace Transforms. Process Dynamics and Control
Solution of ODEs using Laplace Transforms Process Dynamics and Control 1 Linear ODEs For linear ODEs, we can solve without integrating by using Laplace transforms Integrate out time and transform to Laplace
More information20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes
Transfer Functions 2.6 Introduction In this Section we introduce the concept of a transfer function and then use this to obtain a Laplace transform model of a linear engineering system. (A linear engineering
More informationSTABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse
SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 4. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.sigmedia.tv STABILITY Have looked at modeling dynamic systems using differential
More informationLaplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in BeaumontenAuge, Normandy, France Died: 5 March 1827 in Paris, France
Pierre Simon Laplace Born: 23 March 1749 in BeaumontenAuge, Normandy, France Died: 5 March 1827 in Paris, France Laplace Transforms Dr. M. A. A. Shoukat Choudhury 1 Laplace Transforms Important analytical
More information( ) ( = ) = ( ) ( ) ( )
( ) Vρ C st s T t 0 wc Ti s T s Q s (8) K T ( s) Q ( s) + Ti ( s) (0) τs+ τs+ V ρ K and τ wc w T (s)g (s)q (s) + G (s)t(s) i G and G are transfer functions and independent of the inputs, Q and T i. Note
More informationLaplace Transforms and use in Automatic Control
Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral
More informationTime Response Analysis (Part II)
Time Response Analysis (Part II). A critically damped, continuoustime, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary
More informationNotes 07 largely plagiarized by %khc
Notes 07 largely plagiarized by %khc Warning This set of notes covers the Fourier transform. However, i probably won t talk about everything here in section; instead i will highlight important properties
More informationDr. Ian R. Manchester
Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus
More informationOrdinary Differential Equations
Ordinary Differential Equations for Engineers and Scientists Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International
More informationLaplace Transform Problems
AP Calculus BC Name: Laplace Transformation Day 3 2 January 206 Laplace Transform Problems Example problems using the Laplace Transform.. Solve the differential equation y! y = e t, with the initial value
More information2.161 Signal Processing: Continuous and Discrete Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS
More informationMAE143a: Signals & Systems (& Control) Final Exam (2011) solutions
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noisecancelling headphone system. 1a. Based on the lowpass filter given, design a highpass filter,
More informationCourse roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform
ME45: Control Systems Lecture 2 Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Transfer function Models for systems electrical mechanical electromechanical Block
More informationCourse Background. Loosely speaking, control is the process of getting something to do what you want it to do (or not do, as the case may be).
ECE4520/5520: Multivariable Control Systems I. 1 1 Course Background 1.1: From time to frequency domain Loosely speaking, control is the process of getting something to do what you want it to do (or not
More informationSchool of Mechanical Engineering Purdue University. ME375 Dynamic Response  1
Dynamic Response of Linear Systems Linear System Response Superposition Principle Responses to Specific Inputs Dynamic Response of f1 1st to Order Systems Characteristic Equation  Free Response Stable
More informationLaplace Transform Part 1: Introduction (I&N Chap 13)
Laplace Transform Part 1: Introduction (I&N Chap 13) Definition of the L.T. L.T. of Singularity Functions L.T. Pairs Properties of the L.T. Inverse L.T. Convolution IVT(initial value theorem) & FVT (final
More informationEE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models
EE/ME/AE324: Dynamical Systems Chapter 7: Transform Solutions of Linear Models The Laplace Transform Converts systems or signals from the real time domain, e.g., functions of the real variable t, to the
More informationControl Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 5: Transfer Functions Readings: Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich October 20, 2017 E. Frazzoli (ETH) Lecture 5: Control Systems I 20/10/2017
More informationCHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2
CHEE 39 Tutorial 3 Solutions. Using partial fraction expansions, find the causal function f whose Laplace transform is given by: F (s) 0 f(t)e st dt (.) F (s) = s(s+) ; Solution: Note that the polynomial
More informationControl Systems. Laplace domain analysis
Control Systems Laplace domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic equations define an Input/Output
More informationECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52
1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n
More informationEE102 Homework 2, 3, and 4 Solutions
EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of
More informationControl System. Contents
Contents Chapter Topic Page Chapter Chapter Chapter3 Chapter4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : Steadystate error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace
More informationLecture 7: Laplace Transform and Its Applications Dr.Ing. Sudchai Boonto
DrIng Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand Outline Motivation The Laplace Transform The Laplace Transform
More informationTable of Laplacetransform
Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e at, an exponential function s + a sin wt, a sine fun
More informationDIFFERENTIATION AND INTEGRATION PART 1. Mr C s IB Standard Notes
DIFFERENTIATION AND INTEGRATION PART 1 Mr C s IB Standard Notes In this PDF you can find the following: 1. Notation 2. Keywords Make sure you read through everything and the try examples for yourself before
More informationDr Ian R. Manchester
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationEE Experiment 11 The Laplace Transform and Control System Characteristics
EE216:11 1 EE 216  Experiment 11 The Laplace Transform and Control System Characteristics Objectives: To illustrate computer usage in determining inverse Laplace transforms. Also to determine useful signal
More information06/12/ rws/jMc modif SuFY10 (MPF)  Textbook Section IX 1
IV. ContinuousTime Signals & LTI Systems [p. 3] Analog signal definition [p. 4] Periodic signal [p. 5] Onesided signal [p. 6] Finite length signal [p. 7] Impulse function [p. 9] Sampling property [p.11]
More informationLecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.
ISS0031 Modeling and Identification Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. Aleksei Tepljakov, Ph.D. September 30, 2015 Linear Dynamic Systems Definition
More informationExplanations and Discussion of Some Laplace Methods: Transfer Functions and Frequency Response. Y(s) = b 1
Engs 22 p. 1 Explanations Discussion of Some Laplace Methods: Transfer Functions Frequency Response I. Anatomy of Differential Equations in the SDomain Parts of the sdomain solution. We will consider
More informationTopic # Feedback Control Systems
Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the
More informationLinearization of Differential Equation Models
Linearization of Differential Equation Models 1 Motivation We cannot solve most nonlinear models, so we often instead try to get an overall feel for the way the model behaves: we sometimes talk about looking
More informationIntroduction to Process Control
Introduction to Process Control For more visit : www.mpgirnari.in By: M. P. Girnari (SSEC, Bhavnagar) For more visit: www.mpgirnari.in 1 Contents: Introduction Process control Dynamics Stability The
More informationChapter 6: The Laplace Transform. ChihWei Liu
Chapter 6: The Laplace Transform ChihWei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace
More informationENGIN 211, Engineering Math. Laplace Transforms
ENGIN 211, Engineering Math Laplace Transforms 1 Why Laplace Transform? Laplace transform converts a function in the time domain to its frequency domain. It is a powerful, systematic method in solving
More information27. The pole diagram and the Laplace transform
124 27. The pole diagram and the Laplace transform When working with the Laplace transform, it is best to think of the variable s in F (s) as ranging over the complex numbers. In the first section below
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real
More information25. Chain Rule. Now, f is a function of t only. Expand by multiplication:
25. Chain Rule The Chain Rule is present in all differentiation. If z = f(x, y) represents a twovariable function, then it is plausible to consider the cases when x and y may be functions of other variable(s).
More informationNotes for ECE320. Winter by R. Throne
Notes for ECE3 Winter 45 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................
More informationControl Systems. System response. L. Lanari
Control Systems m i l e r p r a in r e v y n is o System response L. Lanari Outline What we are going to see: how to compute in the sdomain the forced response (zerostate response) using the transfer
More information20. The pole diagram and the Laplace transform
95 0. The pole diagram and the Laplace transform When working with the Laplace transform, it is best to think of the variable s in F (s) as ranging over the complex numbers. In the first section below
More informatione st f (t) dt = e st tf(t) dt = L {t f(t)} s
Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic
More informationRaktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries
. AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace
More informationLTI Systems (Continuous & Discrete)  Basics
LTI Systems (Continuous & Discrete)  Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and timeinvariant (b) linear and timevarying
More informationIntroduction & Laplace Transforms Lectures 1 & 2
Introduction & Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Control System Definition of a Control System Group of components that collectively
More informationExam in Systems Engineering/Process Control
Department of AUTOMATIC CONTROL Exam in Systems Engineering/Process Control 2762 Points and grading All answers must include a clear motivation. Answers may be given in English or Swedish. The total
More informationDynamic modelling J.P. CORRIOU. Reaction and Process Engineering Laboratory University of LorraineCNRS, Nancy (France) Zhejiang University 2016
Dynamic modelling J.P. CORRIOU Reaction and Process Engineering Laboratory University of LorraineCNRS, Nancy (France) Zhejiang University 216 J.P. Corriou (LRGP) Dynamic modelling Zhejiang University
More informationChapter 7. Digital Control Systems
Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steadystate error, and transient response for computercontrolled systems. Transfer functions,
More informationModule 4. Related web links and videos. 1. FT and ZT
Module 4 Laplace transforms, ROC, rational systems, Z transform, properties of LT and ZT, rational functions, system properties from ROC, inverse transforms Related web links and videos Sl no Web link
More informationLecture 9. Welcome back! Coming week labs: Today: Lab 16 System Identification (2 sessions)
232 Welcome back! Coming week labs: Lecture 9 Lab 16 System Identification (2 sessions) Today: Review of Lab 15 System identification (ala ME4232) Time domain Frequency domain 1 Future Labs To develop
More informationCorrection for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002
Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationRoot Locus Design Example #3
Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll
More informationEE 3054: Signals, Systems, and Transforms Summer It is observed of some continuoustime LTI system that the input signal.
EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuoustime LTI system that the input signal = 3 u(t) produces
More informationStability. X(s) Y(s) = (s + 2) 2 (s 2) System has 2 poles: points where Y(s) > at s = +2 and s = 2. Y(s) 8X(s) G 1 G 2
Stability 8X(s) X(s) Y(s) = (s 2) 2 (s 2) System has 2 poles: points where Y(s) > at s = 2 and s = 2 If all poles are in region where s < 0, system is stable in Fourier language s = jω G 0  x3 x7 Y(s)
More informationSystems Engineering/Process Control L4
1 / 24 Systems Engineering/Process Control L4 Inputoutput models Laplace transform Transfer functions Block diagram algebra Reading: Systems Engineering and Process Control: 4.1 4.4 2 / 24 Laplace transform
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response
.. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........
More informationComputer Problems for Methods of Solving Ordinary Differential Equations
Computer Problems for Methods of Solving Ordinary Differential Equations 1. Have a computer make a phase portrait for the system dx/dt = x + y, dy/dt = 2y. Clearly indicate critical points and separatrices.
More informationAn Introduction to Control Systems
An Introduction to Control Systems Signals and Systems: 3C1 Control Systems Handout 1 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie November 21, 2012 Recall the concept of a
More informationIdentification Methods for Structural Systems
Prof. Dr. Eleni Chatzi System Stability Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can be defined from
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles
More informationMath Homework 3 Solutions. (1 y sin x) dx + (cos x) dy = 0. = sin x =
2.6 #10: Determine if the equation is exact. If so, solve it. Math 31501 Homework 3 Solutions (1 y sin x) dx + (cos x) dy = 0 Solution: Let P (x, y) = 1 y sin x and Q(x, y) = cos x. Note P = sin x = Q
More informationProfessor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley
Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the
More informationMath 353 Lecture Notes Week 6 Laplace Transform: Fundamentals
Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals J. Wong (Fall 217) October 7, 217 What did we cover this week? Introduction to the Laplace transform Basic theory Domain and range of L Key
More informationLecture 12. AO Control Theory
Lecture 12 AO Control Theory Claire Max with many thanks to Don Gavel and Don Wiberg UC Santa Cruz February 18, 2016 Page 1 What are control systems? Control is the process of making a system variable
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 5: Calculating the Laplace Transform of a Signal Introduction In this Lecture, you will learn: Laplace Transform of Simple
More informationProblem Weight Score Total 100
EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total
More informationDynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.
Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control
More informationControl Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017
More informationPredator  Prey Model Trajectories and the nonlinear conservation law
Predator  Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline
More informationDiscrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture
Discrete Systems Mark Cannon Hilary Term 22  Lecture 4 Step response and pole locations 4  Review Definition of transform: U() = Z{u k } = u k k k= Discrete transfer function: Y () U() = G() = Z{g k},
More informationCircuit Analysis Using Fourier and Laplace Transforms
EE2015: Electrical Circuits and Networks Nagendra Krishnapura https://wwweeiitmacin/ nagendra/ Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India JulyNovember
More informationLecture 7:Time Response PoleZero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion
Cleveland State University MCE441: Intr. Linear Control Lecture 7:Time Influence of Poles and Zeros Higher Order and Pole Criterion Prof. Richter 1 / 26 FirstOrder Specs: Step : Pole Real inputs contain
More informationMath 216 Second Midterm 19 March, 2018
Math 26 Second Midterm 9 March, 28 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that
More informationContinuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4
Continuous Time Signal Analysis: the Fourier Transform Lathi Chapter 4 Topics Aperiodic signal representation by the Fourier integral (CTFT) Continuoustime Fourier transform Transforms of some useful
More informationQueen s University at Kingston. CHEE Winter Process Dynamics and Control. M. Guay. Quiz 1
Queen s University at Kingston CHEE 319  Winter 2011 Process Dynamics and Control M. Guay Quiz 1 Instructions: 1. This is a 50 minute examination. 2. Please write your student number instead of your name
More informationMATH 2410 PRACTICE PROBLEMS FOR FINAL EXAM
MATH 2410 PRACTICE PROBLEMS FOR FINAL EXAM Date and place: Saturday, December 16, 2017. Section 001: 3:305:30 pm at MONT 225 Section 012: 8:0010:00am at WSRH 112. Material covered: Lectures, quizzes,
More informationMath 3313: Differential Equations Laplace transforms
Math 3313: Differential Equations Laplace transforms Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Introduction Inverse Laplace transform Solving ODEs with Laplace
More informationHomework Solutions:
Homework Solutions: 1.11.3 Section 1.1: 1. Problems 1, 3, 5 In these problems, we want to compare and contrast the direction fields for the given (autonomous) differential equations of the form y = ay
More informationC(s) R(s) 1 C(s) C(s) C(s) = s  T. Ts + 1 = 1 s  1. s + (1 T) Taking the inverse Laplace transform of Equation (5 2), we obtain
analyses of the step response, ramp response, and impulse response of the secondorder systems are presented. Section 5 4 discusses the transientresponse analysis of higherorder systems. Section 5 5 gives
More informationLecture 12. Frequency response. Luca Ferrarini  Basic Automatic Control 1
Lecture Frequency response Luca Ferrarini  Basic Automatic Control Response to a sinusoidal input u () t y( t) ( s) Similarly to the step response, we will analyze now how the system with transfer function
More informationGiven: We are given the drawing above and the assumptions associated with the schematic diagram.
PROBLEM 1: (30%) The schematic shown below represents a pulleydriven machine with a flexible support. The three coordinates shown are absolute coordinates drawn with respect to the static equilibrium
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationPoles, Zeros and System Response
Time Response After the engineer obtains a mathematical representation of a subsystem, the subsystem is analyzed for its transient and steady state responses to see if these characteristics yield the desired
More informationEE 261 The Fourier Transform and its Applications Fall 2006 Final Exam Solutions. Notes: There are 7 questions for a total of 120 points
EE 6 The Fourier Transform and its Applications Fall 6 Final Exam Solutions Notes: There are 7 questions for a total of points Write all your answers in your exam booklets When there are several parts
More informationVideo 5.1 Vijay Kumar and Ani Hsieh
Video 5.1 Vijay Kumar and Ani Hsieh Robo3x1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior
More informationMODELING OF CONTROL SYSTEMS
1 MODELING OF CONTROL SYSTEMS Feb15 Dr. Mohammed Morsy Outline Introduction Differential equations and Linearization of nonlinear mathematical models Transfer function and impulse response function Laplace
More informationLearn2Control Laboratory
Learn2Control Laboratory Version 3.2 Summer Term 2014 1 This Script is for use in the scope of the Process Control lab. It is in no way claimed to be in any scientific way complete or unique. Errors should
More informationReview of Linear TimeInvariant Network Analysis
D1 APPENDIX D Review of Linear TimeInvariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D1. If an input x 1 (t) produces an output y 1 (t), and an input x
More informationI Laplace transform. I Transfer function. I Conversion between systems in time, frequencydomain, and transfer
EE C128 / ME C134 Feedback Control Systems Lecture Chapter 2 Modeling in the Frequency Domain Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley Lecture
More information